Postsynaptic Neuroligin1 regulates presynaptic maturation.

نویسندگان

  • Nina Wittenmayer
  • Christoph Körber
  • Huisheng Liu
  • Thomas Kremer
  • Frederique Varoqueaux
  • Edwin R Chapman
  • Nils Brose
  • Thomas Kuner
  • Thomas Dresbach
چکیده

Presynaptic nerve terminals pass through distinct stages of maturation after their initial assembly. Here we show that the postsynaptic cell adhesion molecule Neuroligin1 regulates key steps of presynaptic maturation. Presynaptic terminals from Neuroligin1-knockout mice remain structurally and functionally immature with respect to active zone stability and synaptic vesicle pool size, as analyzed in cultured hippocampal neurons. Conversely, overexpression of Neuroligin1 in immature neurons, that is within the first 5 days after plating, induced the formation of presynaptic boutons that had hallmarks of mature boutons. In particular, Neuroligin1 enhanced the size of the pool of recycling synaptic vesicles, the rate of synaptic vesicle exocytosis, the fraction of boutons responding to depolarization, as well as the responsiveness of the presynaptic release machinery to phorbol ester stimulation. Moreover, Neuroligin1 induced the formation of active zones that remained stable in the absence of F-actin, another hallmark of advanced maturation. Acquisition of F-actin independence of the active zone marker Bassoon during culture development or induced via overexpression of Neuroligin1 was activity-dependent. The extracellular domain of Neuroligin1 was sufficient to induce assembly of functional presynaptic terminals, while the intracellular domain was required for terminal maturation. These data show that induction of presynaptic terminal assembly and maturation involve mechanistically distinct actions of Neuroligins, and that Neuroligin1 is essential for presynaptic terminal maturation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Downregulation of neuroligin1 ameliorates postoperative pain through inhibiting neuroligin1/postsynaptic density 95-mediated synaptic targeting of α-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptor GluA1 subunits in rat dorsal horns

Neuroligin1 is an important synaptic cell adhesion molecule that modulates the function of synapses through protein-protein interactions. Yet, it remains unclear whether the regulation of synaptic transmission in the spinal cord by neruoligin1 contributes to the development of postoperative pain. In a rat model of postoperative pain induced by plantar incision, we conducted Western blot study t...

متن کامل

Miniature Neurotransmission Regulates Drosophila Synaptic Structural Maturation

Miniature neurotransmission is the transsynaptic process where single synaptic vesicles spontaneously released from presynaptic neurons induce miniature postsynaptic potentials. Since their discovery over 60 years ago, miniature events have been found at every chemical synapse studied. However, the in vivo necessity for these small-amplitude events has remained enigmatic. Here, we show that min...

متن کامل

Postsynaptic SDC2 induces transsynaptic signaling via FGF22 for bidirectional synaptic formation

Functional synapse formation requires tight coordination between pre- and post-synaptic termini. Previous studies have shown that postsynaptic expression of heparan sulfate proteoglycan syndecan-2 (SDC2) induces dendritic spinogenesis. Those SDC2-induced dendritic spines are frequently associated with presynaptic termini. However, how postsynaptic SDC2 accelerates maturation of corresponding pr...

متن کامل

Trans-synaptic EphB2-ephrin-B3 interaction regulates excitatory synapse density by inhibition of postsynaptic MAPK signaling.

Nervous system function requires tight control over the number of synapses individual neurons receive, but the underlying cellular and molecular mechanisms that regulate synapse number remain obscure. Here we present evidence that a trans-synaptic interaction between EphB2 in the presynaptic compartment and ephrin-B3 in the postsynaptic compartment regulates synapse density and the formation of...

متن کامل

Presynaptic GABAB Receptor Regulates Activity-Dependent Maturation and Patterning of Inhibitory Synapses through Dynamic Allocation of Synaptic Vesicles

Accumulating evidence indicate that GABA regulates activity-dependent development of inhibitory synapses in the vertebrate brain, but the underlying mechanisms remain unclear. Here we combined live imaging of cortical GABAergic axons with single cell genetic manipulation to dissect the role of presynaptic GABA(B) receptors (GABA(B)Rs) in inhibitory synapse formation in mouse. Developing GABAerg...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 106 32  شماره 

صفحات  -

تاریخ انتشار 2009